মঙ্গলবার, ২০ অক্টোবর, ২০১৫

[Points,Lines] Problem 2 : uva Sunny Mountains

Problem id : uva Sunny Mountains

If you see the inputs you'll see the points come in randomly . But from the figure it's obvious that we need to go from right to left (At least for the way I'm thinking) .Lets say right one is point p_1 and the left most one is point p_n .p_1 has highest x co-ordinate and p_n has the lowest.So,I'm gonna sort the points according to their x co-ordinates.Then,for p_1 and p_2 we must take the total distance (no line segments right to p_1-p_n).And then we will check which point has the greater y co-ordinate than p2 just left to it.Lets say that's point i.Then we find the intersection point of line segments p_i-p_(i-1) and the horizontal line passing through p2.We find the distance between p_i and intersection point and add that to answer and so on.


Code :




  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
#include<bits/stdc++.h>

using namespace std;

#define INF 1e9
#define EPS 1e-9
#define PI acos(-1.0) // important constant; alternative #define PI (2.0 * acos(0.0))

double DEG_to_RAD(double d)
{
    return d * PI / 180.0;
}

double RAD_to_DEG(double r)
{
    return r * 180.0 / PI;
}

// struct point_i { int x, y; };    // basic raw form, minimalist mode
struct point_i
{
    int x, y;     // whenever possible, work with point_i
    point_i()
    {
        x = y = 0;    // default constructor *** Usage : point_i p();
    }
    point_i(int _x, int _y) : x(_x), y(_y) {}
};         // user-defined *** Usage : point_i p(5,6);

struct point
{
    double x, y;   // only used if more precision is needed
    point()
    {
        x = y = 0.0;    // default constructor
    }
    point(double _x, double _y) : x(_x), y(_y) {}        // user-defined
    bool operator < (point other) const   // override less than operator
    {
        if (fabs(x - other.x) > EPS)                 // useful for sorting
            return x > other.x;          // first criteria , by x-coordinate // < max to min for this problem's purpose
        return y < other.y; //Not necessary in this problem
    }          // second criteria, by y-coordinate // < min to max

    // use EPS (1e-9) when testing equality of two floating points
    bool operator == (point other) const
    {
        return (fabs(x - other.x) < EPS && (fabs(y - other.y) < EPS));
    }
}; // 2 points have same x and y co-ordinate

double dist(point p1, point p2)                  // Euclidean distance
{
    // hypot(dx, dy) returns sqrt(dx * dx + dy * dy)
    return hypot(p1.x - p2.x, p1.y - p2.y);
}           // return double

// rotate p by theta degrees CCW w.r.t origin (0, 0)
//Going CCW theta is equivalent to going ( CW 360 - theta ) degree
point rotate(point p, double theta)   //The input parameter theta will be provided in degrees //function returns a point
{
    double rad = DEG_to_RAD(theta);    // multiply theta with PI / 180.0
    return point(p.x * cos(rad) - p.y * sin(rad),
                 p.x * sin(rad) + p.y * cos(rad));
}

struct line
{
    double a, b, c;
};          // a way to represent a line
//as generally lines are constructed from 2 points . No such constructor as line(a,b,c)

// the answer is stored in the third parameter (pass by reference) //
//pass by reference syntax : func(int &x){...}  {int x; func(x);}
void pointsToLine(point p1, point p2, line &l)   //Usage : line Ln ; pointsToLine(p1,p2,Ln);
{
    if (fabs(p1.x - p2.x) < EPS)                // vertical line is fine //same x co-ordinate
    {
        l.a = 1.0;
        l.b = 0.0;
        l.c = -p1.x;           // default values
    }
    else
    {
        l.a = -(double)(p1.y - p2.y) / (p1.x - p2.x);
        l.b = 1.0;              // IMPORTANT: we fix the value of b to 1.0
        l.c = -(double)(l.a * p1.x) - p1.y;
    }
}

// not needed since we will use the more robust form: ax + by + c = 0 (see above)
struct line2
{
    double m, c;
};      // another way to represent a line

int pointsToLine2(point p1, point p2, line2 &l)
{
    if (abs(p1.x - p2.x) < EPS)            // special case: vertical line
    {
        l.m = INF;                    // l contains m = INF and c = x_value
        l.c = p1.x;                  // to denote vertical line x = x_value
        return 0;   // we need this return variable to differentiate result //for vertical line the function returns 0
    }
    else
    {
        l.m = (double)(p1.y - p2.y) / (p1.x - p2.x);
        l.c = p1.y - l.m * p1.x;
        return 1;     // l contains m and c of the line equation y = mx + c //returns 1 so non-vertical
    }
}
//Next few functions are just for line[a,b,c] representation
bool areParallel(line l1, line l2)         // check coefficients a & b
{
    return (fabs(l1.a-l2.a) < EPS) && (fabs(l1.b-l2.b) < EPS);
}

bool areSame(line l1, line l2)             // also check coefficient c
{
    return areParallel(l1 ,l2) && (fabs(l1.c - l2.c) < EPS);
}

// returns true (+ intersection point) if two lines are intersect
bool areIntersect(line l1, line l2, point &p)   //pass by reference //saving intersection point to point p
{
    if (areParallel(l1, l2)) return false;            // no intersection
    // solve system of 2 linear algebraic equations with 2 unknowns
    p.x = (l2.b * l1.c - l1.b * l2.c) / (l2.a * l1.b - l1.a * l2.b);
    // special case: test for vertical line to avoid division by zero
    if (fabs(l1.b) > EPS) p.y = -(l1.a * p.x + l1.c);
    else                  p.y = -(l2.a * p.x + l2.c);
    return true;
}

struct vec
{
    double x, y;  // name: `vec' is different from STL vector
    vec(double _x, double _y) : x(_x), y(_y) {}
};

vec toVec(point a, point b)         // convert 2 points to vector a->b  AB
{
    return vec(b.x - a.x, b.y - a.y);
} //same as thinking about a point w.r.t. origin

vec scale(vec v, double s)          // nonnegative s = [<1 .. 1 .. >1]
{
    return vec(v.x * s, v.y * s);
}               // shorter__same__longer

point translate(point p, vec v)          // translate p according to v
{
    return point(p.x + v.x , p.y + v.y);
} // the point will move according to vector (vectors x,y component
//would be added to point's x,y co-ordinate)

// convert point and gradient/slope to line
void pointSlopeToLine(point p, double m, line &l)   //If the slope and a single point is known the line can be constructed
{
    l.a = -m;                                               // always -m
    l.b = 1;                                                 // always 1
    l.c = -((l.a * p.x) + (l.b * p.y));
}                // compute this
//Closest point in l from p
void closestPoint(line l, point p, point &ans)
{
    line perpendicular;         // perpendicular to l and pass through p
    if (fabs(l.b) < EPS)                // special case 1: vertical line
    {
        ans.x = -(l.c);
        ans.y = p.y;
        return;
    }

    if (fabs(l.a) < EPS)              // special case 2: horizontal line
    {
        ans.x = p.x;
        ans.y = -(l.c);
        return;
    }

    pointSlopeToLine(p, 1 / l.a, perpendicular);          // normal line
    // intersect line l with this perpendicular line
    // the intersection point is the closest point
    areIntersect(l, perpendicular, ans); //areIntersect returns bool and stores intersection point in answer
}

// returns the reflection of point on a line   .  |  . <-- reflection
void reflectionPoint(line l, point p, point &ans)
{
    point b;
    closestPoint(l, p, b);                     // similar to distToLine
    vec v = toVec(p, b);                             // create a vector
    ans = translate(translate(p, v), v);
}         // translate p twice

double dot(vec a, vec b)
{
    return (a.x * b.x + a.y * b.y);
}

double norm_sq(vec v) //returns the value^2 of the vector
{
    return v.x * v.x + v.y * v.y;
}

// returns the distance from p to the line defined by
// two points a and b (a and b must be different)
// the closest point is stored in the 4th parameter (byref)
double distToLine(point p, point a, point b, point &c)
{
    // formula: c = a + u * ab
    vec ap = toVec(a, p), ab = toVec(a, b);
    double u = dot(ap, ab) / norm_sq(ab);
    c = translate(a, scale(ab, u));                  // translate a to c
    return dist(p, c);
}           // Euclidean distance between p and c

// returns the distance from p to the line segment ab defined by
// two points a and b (still OK if a == b)
// the closest point is stored in the 4th parameter (byref)
double distToLineSegment(point p, point a, point b, point &c)
{
    vec ap = toVec(a, p), ab = toVec(a, b);
    double u = dot(ap, ab) / norm_sq(ab);
    if (u < 0.0)
    {
        c = point(a.x, a.y);                   // closer to a
        return dist(p, a);
    }         // Euclidean distance between p and a
    if (u > 1.0)
    {
        c = point(b.x, b.y);                   // closer to b
        return dist(p, b);
    }         // Euclidean distance between p and b
    return distToLine(p, a, b, c);
}          // run distToLine as above

double angle(point a, point o, point b)    // returns angle aob in rad
{
    vec oa = toVec(o, a), ob = toVec(o, b);
    return acos(dot(oa, ob) / sqrt(norm_sq(oa) * norm_sq(ob)));
}

double cross(vec a, vec b)
{
    return a.x * b.y - a.y * b.x;
}

//// another variant
//int area2(point p, point q, point r) { // returns 'twice' the area of this triangle A-B-c
//  return p.x * q.y - p.y * q.x +
//         q.x * r.y - q.y * r.x +
//         r.x * p.y - r.y * p.x;
//}

// note: to accept collinear points, we have to change the `> 0'
// returns true if point r is on the left side of line pq
bool ccw(point p, point q, point r)
{
    return cross(toVec(p, q), toVec(p, r)) > 0;
}

// returns true if point r is on the same line as the line pq
bool collinear(point p, point q, point r)
{
    return fabs(cross(toVec(p, q), toVec(p, r))) < EPS;
}
vector<point>vp;
int main()
{

   int C;//C for cases
   cin>>C;
   while(C--)
   {
       int N;int num_of_p;
       cin>>N;
       num_of_p = N;
       while(N--)
       {
           double x,y;
           cin>>x>>y;
           point p_temp(x,y);
           vp.push_back(p_temp);

       }
       sort(vp.begin(),vp.end());
       double total_dist = 0.00000000f;
       total_dist += dist(vp[0],vp[1]);
       int b;
      for(int a=1;a<num_of_p;){
        for(b = a+1;b<num_of_p;b++)
       {
           point temp1,temp2,temp2_down;
           temp1 = vp[a];temp2 = vp[b];
           temp2_down = vp[b-1];
      if(temp2.y>temp1.y)
      {
          line l1,l2;
          point paral_2_x(0,temp1.y);
          pointsToLine(temp1,paral_2_x,l1);
          pointsToLine(temp2,temp2_down,l2);
          point P_intrsct;
          areIntersect(l1,l2,P_intrsct);
          total_dist += dist(temp2,P_intrsct);
          a = b;

      }



       }
       if(b==num_of_p)
        break;

      }

      printf("%.2lf\n",total_dist);

vp.clear(); //This can be a killer , whenever using vector and there are multiple test cases clear vector

   }

    return 0;
}

কোন মন্তব্য নেই:

একটি মন্তব্য পোস্ট করুন